Mixed-valence States of ⁵⁷Fe Atoms Produced in ⁵⁷Co-labelled [CoFe₂O(CH₂ICO₂)₆(H₂O)₃] and [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃]

Takuma SATO, Kiyomi ISHISHITA, Motomi KATADA, Hirotoshi SANO,*
Yasuyuki ARATONO,† Chiaki SAGAWA,† and Masakatsu SAEKI†

Department of Chemistry, Faculty of Science, Tokyo Metropolitan
University, Fukasawa, Setagaya-ku, Tokyo 158

†Department of Chemistry, Japan Atomic Energy Research
Institute, Tokai-mura, Nakagun, Ibaraki 319-11

Mixed-valence states of 57 Fe atoms produced by ECdecay in 57 Co-labelled [CoFe₂O(CH₂ICO₂)₆(H₂O)₃] and [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃] were studied by means of emission Mössbauer spectroscopy. It was found that [CoFe₂O(CH₂I-CO₂)₆(H₂O)₃] and [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃] show a temperature-dependent trapped-to-averaged valence state and a temperature-independent trapped-valence state, respectively.

Recently we have reported that 57Fe atoms produced by EC-decay in ⁵⁷Co-labelled [Co^{II}Fe $\frac{1}{2}$ IIO(CH₃CO₂)₆(H₂O)₃] and [Co^{II}Fe $\frac{1}{2}$ IIO(CH₃CO₂)₆(py)₃]py show a temperature-dependent trapped-to-averaged valence state associated with the intramolecular electron transfer as found in the absorption Mössbauer spectra of [Fe^{II}Fe^{III}O(CH₃CO₂)₆(H₂O)₃] and [Fe^{II}Fe^{III}O(CH₃CO₂)₆-(py)3]py, respectively.1) It has been also reported in the absorption ⁵⁷Fe-Mössbauer spectroscopy that the temperature dependence of the mixedvalence state in trinuclear iron complexes depends on a kind of ligands such as H_2O and pyridine, and of carboxylate anions.^{2,3)} The temperature dependence observed in trinuclear iron complexes can be calssified into two groups, a temperature-dependent trapped-to-averaged valence type and a temperature-independent trapped valence type. In the present paper we describe the mixed-valence state of 57Fe atoms produced by the EC-decay in 57Co-labelled [CoFe₂O(CH₂ICO₂)₆(H₂O)₃] and [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃] studied by means of emission Mössbauer spectroscopy, in order to confirm that 57Fe atoms produced by the 57Co EC-decay in trinuclear cobalt-iron complexes remain in the original chemical environment of the parent $^{57}\mathrm{Co}$ atoms for typical compounds which show either a temperature-dependent or a temperature-independent mixed-valence state. The valence state of iron

atoms in the trinuclear iron complexes, [Fe₃O(CH₂ICO₂)₆(H₂O)₃], [Fe₃O-(CH₂BrCO₂)₆(H₂O)₃] and [Fe₃O(CH_{3-n}Cl_nCO₂)₆(H₂O)₃] (0≤n≤3) was also investigated for the sake of comparison of the results with the emission Mössbauer spectroscopic data.

 57 Co-labelled [CoFe₂O(CH₂ICO₂)₆(H₂O)₃] and [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃] were synthesized by the way similar to that reported for non-radioactive [CoFe₂O(CH₃CO₂)₆(H₂O)₃] except for using CH₂ICO₂Na and CH₂BrCO₂Na instead of CH₃CO₂Na and using ca. 1 mCi 57 Co(NO₃)₂ solution.²) An aqueous solution of Fe(NO₃)₃·9H₂O was added dropwise to a mixture of an aqueous solution of CH₂ICO₂Na (or CH₂BrCO₂Na) and Co(NO₃)₂·6H₂O containing 57 Co. Resulting precipitates were filtered and washed with ethanol and ethyl ether.

[Fe₃O(CH₂ICO₂)₆(H₂O)₃], [Fe₃O(CH₂BrCO₂)₆(H₂O)₃], [Fe₃O(CH₂ClCO₂)₆-(H₂O)₃], [Fe₃O(CHCl₂CO₂)₆(H₂O)₃] and [Fe₃O(CCl₃CO₂)₆(H₂O)₃] were prepared by the partial oxidation of an aqueous solution of FeCl₂·4H₂O mixed with CH₂ICO₂Na, CH₂BrCO₂Na, CH₂ClCO₂Na, CHCl₂CO₂Na and CCl₃CO₂Na, respectively, in the presence of air. Resulting precipitates were filtered and washed with ethanol and ethyl ether. The purity of the labelled compounds was checked by comparing the data of elemental analysis obtained in a cold run in the same scale for each compound. The purity of trinuclear iron complexes was also checked by elemental analysis. Emission and absorption Mössbauer spectra were taken by using a constant acceleration type spec-

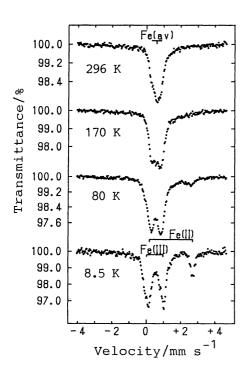


Fig. 1. Absorption Mössbauer spectra of [Fe₃O(CH₂ICO₂)₆(H₂O)₃].

trometer. All the velocity scales were normalized with respect to metallic iron.

It has been reported that the temperature dependence of the valence state

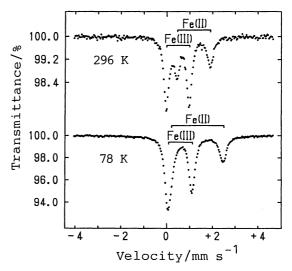


Fig. 2. Absorption Mössbauer spectra of [Fe₃O(CH₂BrCO₂)₆(H₂O)₃].

in trinuclear iron acetate complexes is affected by the substitutions of acetate anions with a long-chain carboxylate anions or of water molecules with pyridine and pyridine derivative molecules. 2,3) It is found in the present studies that the halogenation of acetate anions also affects the temperature dependence of mixed-valence state in iron atoms in $[Fe_3O(CH_3CO_2)_6(H_2O)_3]$, $[Fe_3O(CH_2ICO_2)_6(H_2O)_3]$, $[Fe_3O(CH_2BrCO_2)_6(H_2O)_3]$ and [Fe₃O(CH_{3-n}Cl_nCO₂)₆(H₂O)₃]. [Fe₃O(CH₂ICO₂)₆(H₂O)₃] and [Fe₃O(CCl₃CO₂)₆-(H2O)3] show a temperature-dependent trapped-to-averaged valence state as in the case of $[Fe_3O(CH_3CO_2)_6(H_2O)_3]$, while $[Fe_3O(CH_2BrCO_2)_6(H_2O)_3]$, [Fe₃O(CH₂ClCO₂)₆(H₂O)₃], and [Fe₃O(CHCl₂CO₂)₆(H₂O)₃] show a temperatureindependent trapped valence state. Typical absorption Mössbauer spectra are represented in Figs. 1 and 2 for [Fe₃O(CH₂ICO₂)₆(H₂O)₃] and [Fe₃O-(CH2BrCO2)6(H2O)3], respectively. The electron withdrawing property of the carboxylate groups is known to increase in the order of CH3CO2- < CH2ICO2- < CH2BrCO2- < CH2ClCO2- < CHCl2CO2- < CCl3CO2-, but the temperature dependence does not correspond to the order. The results indicate that the intermolecular interaction predominates rather than the electron withdrawing property of the ligand in the rate of the intramolecular electron transfer, as suggested in the studies of trinuclear long-chain carboxylate complexes. 3) A more detailed discussion on the valence state

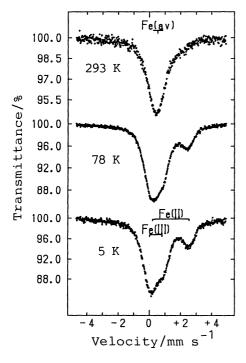


Fig. 3. Emission Mössbauer spectra of ⁵⁷Co-labelled [CoFe₂O(CH₂ICO₂)₆(H₂O)₃].

Fig. 4. Emission Mössbauer spectra of ⁵⁷Co-labelled [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃].

of these complexes will be given elsewhere.

In the cases of trinuclear cobalt-iron complexes, $[CoFe_2O(CH_2ICO_2)_6-(H_2O)_3]$ and $[CoFe_2O(CH_2BrCO_2)_6(H_2O)_3]$ which are isomorphous to the analogous trinuclear iron complexes $[Fe_3O(CH_2ICO_2)_6(H_2O)_3]$ and $[Fe_3O(CH_2Br-CO_2)_6(H_2O)_3]$, respectively, it is confirmed by the absorption Mössbauer spectroscopic studies that the valence state of iron atoms remains in a temperature-independent trivalent state.

Emission Mössbauer spectra of ⁵⁷Co-labelled [CoFe₂O(CH₂ICO₂)₆(H₂O)₃] are shown in Fig. 3. The valence state of 57Fe atoms produced by the ECdecay of ⁵⁷Co in [CoFe₂O(CH₂ICO₂)₆(H₂O)₃] is found to be temperaturedependent as found in the absorption Mössbauer spectra of [Fe₃O(CH₂ICO₂)₆-(H2O)3] (Fig. 1), although the line width of spectral components in the emission Mössbauer spectra is much broader than that found in the absorption Mössbauer spectra probably because of nucleogenic local disturbance associated with the EC-decay. $^{4-7}$) Emission Mössbauer spectra of 57 Colabelled [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃] show that the temperature dependence is essentially different from that observed in [CoFe₂O(CH₂ICO₂)₆(H₂O)₃], as seen in Fig. 4, and that the 57 Fe atoms are trapped in iron(II) and iron(III) states even at room temperature. Since the temperature dependence of the valence states observed in ⁵⁷Co-labelled [CoFe₂O(CH₂ICO₂)₆-(H₂O)₃] and [CoFe₂O(CH₂BrCO₂)₆(H₂O)₃] corresponds to that observed in [Fe₃O(CH₂ICO₂)₆(H₂O)₃] and [Fe₃O(CH₂BrCO₂)₆(H₂O)₃], it is reasonable to conclude that the EC-decay should have little after effect particularly on the mixed-valence state, although some local disturbances are produced by the nuclear transformation. The authors thank Tadahiro Nakamoto for his interest and helpfull discussions.

References

- 1) T. Sato, M. Katada, and H. Sano, J. Radioanal. Nucl. Chem. Lett., <u>144</u>, 195 (1990).
- 2) S. M. Oh, D. N. Hendrickson, K. L. Hassett, and R. E. Davis, J. Am. Chem. Soc., <u>107</u>, 8009 (1985).
- 3) T. Nakamoto, M. Katada, and H. Sano, Chem. Lett., 1990, 225.
- 4) H. Sano, J. Radioanal. Chem., <u>36</u>, 105 (1977).
- 5) K. Endo, M. Harada, Y. Sakai, and H. Sano, J. Phys. (Paris) C2, <u>1979</u>, 420.
- 6) Y. Sakai, K. Endo, and H. Sano, Bull. Chem. Soc. Jpn., <u>53</u>, 1317 (1980).
- 7) Y. Watanabe, K. Endo, and H. Sano, Bull. Chem. Soc. Jpn., <u>61</u>, 2785 (1988).

(Received November 28, 1990)